Publications

[1] Vincent Plassier, Maxime Vono, Alain Durmus, Eric Moulines: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm via Langevin Monte Carlo within Gibbs.
International Conference on Machine Learning (ICML) (2021). [ ArXiv ]
[2] Vincent Plassier, Maxime Vono, Alain Durmus, Aymeric Dieuleveut, Eric Moulines: QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning.
International Conference on Artificial Intelligence and Statistics (AISTATS) (2022). [ Proceedings ]
[3] Hamid Jalalzai*, Elie Kadoche*, Rémi Leluc* and Vincent Plassier*: Membership Inference Attacks via Adversarial Examples.
NeurIPS Workshop on Trustworthy and Socially Responsible Machine Learning (2022). [ ArXiv ]
[4] Vincent Plassier, Alain Durmus, Eric Moulines: Federated averaging Langevin Dynamics: Toward a unified theory and new algorithms.
International Conference on Artificial Intelligence and Statistics (AISTATS) (2022). [ Proceedings ]
[5] Vincent Plassier, François Portier and Johan Segers: Risk bounds when learning infinitely many response functions by ordinary linear regression.
Annales de l'Institut Henri Poincaré (AIHP) (2023). [ ArXiv ]
[6] Vincent Plassier, Mehdi Makni, Aleksandr Rubashevskii, Eric Moulines and Maxim Panov: Conformal Prediction for Federated Uncertainty Quantification Under Label Shift.
In International Conference on Machine Learning (2023). [ ArXiv ]
[7] Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov, Alexander Fishkov, Samuel Horvath, Martin Takac, Eric Moulines and Maxim Panov: Efficient Conformal Prediction under Data Heterogeneity.
International Conference on Artificial Intelligence and Statistics (AISTATS) (2024). [ ArXiv ]
[8] Vincent Plassier, Alexander Fishkov, Eric Moulines and Maxim Panov: Conditionally valid Probabilistic Conformal Prediction.
Preprint . [ ArXiv ]
[9] Vincent Plassier, Alexander Fishkov, Eric Moulines and Maxim Panov: Generalized Conformalized Quantile Regression: A New Approach for Better Conditional Coverage.
Preprint .